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Abstract

In the framework of viscoplastic theory many different laws were developed, accounting for material behaviors like

creep, relaxation or evolution of overstresses. Though each model is able to predict in uni-axial material tests the values

of stresses depending on plastic strains and plastic strain rates the question is if solutions of simulations are still realistic

if the viscoplastic law is applied on structural deformations. In the present study strain rate sensitive metal plates are

subjected to shock waves. The purpose is to compare simulation results obtained with different elastic–viscoplastic laws

to experiments in order to determine the most appropriate material model. By subjecting circular metal plates exper-

imentally to shock wave loadings realistic deformation histories are measured. The measurements are compared to

simulation results obtained with different viscoplastic laws. The aim is to find out the accuracy of each model con-

cerning the predictions of displacements, shape formings, spread of plastic zones and evolutions of inner bending

moments.
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1. Introduction

In viscoplastic theories the deformation velocity plays an important role in predicting plastic defor-

mations. Basic knowledge for calculating the strain rate dependence between stresses and strains was

introduced by Andrade and Da (1910) in the case of creep. Three different stages of this viscoplastic

phenomenon were described: primary creep where the hardening is dominant leading to a decreasing strain

rate. During the secondary creep the material develops plastic strains with constant strain rate and in the

case of tertiary creep the strain rate increases and material damage can occur. Norton (1929) proposed for

secondary creep a law with two viscous material parameters in order to describe the relationship between

stress and plastic strain rate. This law is of elementary importance for calculating overstresses depending on
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the deformation velocity which is used in many viscoplastic laws. This phenomenological description of the

overstress holds not only in creep processes but also in high dynamical deformations. Therefore, the

propagation of plastic waves in rods during impact tests were predicted by Malvern (1951) with viscoplastic

constitutive equations using the overstress versus strain rate relation proposed by Norton (1929). In the
contrary attempts by Taylor (1940) and von K�arm�an (1942) describing wave propagations with strain rate

independent constitutive laws lead to differences between measured and calculated strains. The reason

therefore was the missing overstress in the material model. Three-dimensional viscoplastic constitutive

equations were introduced by Perzyna (1963) assuming perfect plastic material behavior. Chaboche (1989)

and Lemaitre and Chaboche (1994) developed similar laws accounting for non-linear hardening. Following

this method of using overstresses in three-dimensional continuum mechanics several authors proposed their

own viscoplastic models, e.g. Tanimura (1979), Krempl et al. (1984), Krempl and Khan (2003), Lehmann

(1984), Bruhns (1987), Imatani et al. (1991), Uenishi and Teodosiu (2004) or Colak (2004). Gurtin (2003)
presented a viscoplastic theory based on a system of microforces and derivated a weak formulation of a

non-local flow rule. Rizzi and H€ahner (2004) derivated a model to describe plastic material instabilities

and found an agreement to experimental observations. In order to cover in the constitutive equations

also rate dependent elasticity Lubarda et al. (2003) extended an overstress model to a general viscoelastic–

viscoplastic law. The essential characteristic of the mentioned viscoplastic laws is that a yield limit

depending on the strain rate is used, separating elastic and inelastic material behavior from each other. In

contrast to classical plastic flow rules using the second stress invariant, Iyer and Lissenden (2003) used all

three stress invariants in the threshold function and applied this model to alloy at high temperatures. The
problem of rate dependent damage was also covered in the framework of a viscoplastic theory presented by

Voyiadjis et al. (2004). Furthermore, viscoplastic laws were developed which do not distinguish between

elastic and plastic strains. For example Bodner and Partom (1975) and Walker (1981) proposed constitutive

equations assuming that every stress state behaves viscoplastic.

Also extensions of rate dependent material behavior for the case of finite viscoplasticity were carried out,

e.g. by Lin and Brocks (2004) who developed a finite strain viscoplastic law using a new dissipation

inequality and presented a numerical algorithm. Schneidler and Wright (2003) applied finite viscoplastic

deformations also to arbitrarily anisotropic materials. Other anisotropic constitutive equations were e.g.
proposed by Haupt and Kersten (2003), Tsakmakis (2004), and H€ausler et al. (2004).

In the present work isotropic constitutive equations for small plastic strains are chosen from two classes

of viscoplastic models, with and without yield limit. The magnitude of strains in the presented calculations

is not greater than 5%. But the strain rates in the shock wave loaded structures can increase up to 200 1
s.

Within these ranges of strains and strain rates the chosen constitutive models can be applied without

leaving their domain of validity. The three-dimensional time dependent constitutive equations lead to

complex mathematical descriptions especially if non-linear hardening is considered. Therefore the ques-

tion arises if the viscoplastic model is overloaded and if some parts of the material behavior (e.g. hardening)
can be neglected in order to save computer capacity. The effect of time consuming calculations is addi-

tionally intensified if calculations of structural responses are concerned, leading to geometrical non-

linearities.

Therefore the aim is not only to determine which models are able to predict the deformations, plastic

zones and the evolutions of bending moments accurately, but also to find out which parts of the viscoplastic

law can be neglected, leading, however, to sufficient good correlations to the measurements.

In order to obtain calculation results of deformed viscoplastic plates, which can be compared to mea-

sured deformations, the viscoplastic constitutive equations are combined with a first-order shear defor-
mation shell theory described in Section 3. Implemented in a finite element code simulations can be carried

out and are compared to measurements. Here the following viscoplastic laws are applied:

First, the model of Chaboche (1989), consisting of three essential parts: the elastic domain, the hard-

ening part and the viscous behavior, i.e. the part of the model being responsible for the development of
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overstresses. In order to determine which part of the elastic–viscoplastic model is responsible for a proper

prediction of the observed deformations or which parts could be neglected the material model is reduced

to a more simple description. For example it could make sense to neglect the elastic part if the plastic

strains are dominant or the hardening could be neglected, if the plastic strains are very small. Here
two assumptions connected with the Chaboche model are introduced, elastic–perfectly plastic and rigid–

perfectly plastic material behavior, but the strain rate sensitivity is still considered. The consequences of

these simplifications will be traced beginning with the evolution of bending moments and shape forming

until to the final deformation of the plate.

Second, the Tanimura model (1979) is chosen because this law was introduced by its author as a con-

stitutive model being suitable for deformation processes with high strain rates. It uses also a yield limit but

assumes perfect plasticity.

Third, in order to apply a model which does not use a yield limit the Bodner–Partom law (1975) is also
taken into consideration. In this constitutive model it is not possible to separate elastic and inelastic

material behavior from each other because every stress state is assumed to be viscoplastic.

In order to simulate the deformations of impulsively loaded metal plates a structural theory is applied,

which can be connected in a finite element code with each of the examined viscoplastic models separately.

The results of the simulations can be compared to measured deflections.

In literature a wide range of comparative studies can be found. Here only those articles are discussed

which consider both, calculated and measured structural deformations. Several approaches are reported on

how to investigate the inelastic dynamic behavior of structures subjected to impulsive loading experi-
mentally and to simulate the response numerically based on various constitutive models and structural

theories. An overview of relevant articles in this field is given e.g. by Cristescu (1967), Jones (1989) and

Stronge and Yu (1993). In several studies explosions were used to subject structures to impulsive loadings

(Idczak et al., 1981; Renard and Pennetier, 1996) and the final deformations were measured. In the present

paper shock tubes with sensors for recording the pressure and the middle point displacement of the plates

during the time are used. The advantage of the shock tube technique is the evolution of plane shock wave

fronts (Gerard, 1956), thus yielding a uniformly distributed pressure pulse on plate specimens. This allows a

measurement of the pressure impulse by sensors, which are integrated in a ring flange next to the plate. In
the contrary spherical shock wave fronts generated by detonations lead to a complex pressure distribution

on the examined structure.

In order to calculate the deformations observed in experiments many combinations of structural and

constitutive models have been applied. Florence (1966) considered rigid–plastic material behavior applied

to impulsively loaded plates. The experiments were performed with sheet explosives; final deformations

were measured and compared to numerical simulations. Bad correlations were explained by an insufficient

plate theory not taking membrane forces into account. Wierzbicki and Florence (1970) modified the

constitutive model by using a viscoplastic law for large displacements. Their study showed that strain rate
sensitivity and membrane forces have equally important strengthening effects. Kłosowski et al. (1995)

applied models of Chaboche (1989) and Bodner and Partom (1975) and made comparative studies of

structures under various types of impulsive loads and obtained different results depending on the used

model. However, the material parameters for the respective models were taken from different sources in the

literature. Kalthoff and Winkler (1987) and Kalthoff (2000) observed experimentally for impact loaded

prenotched steel plates a dependency between impact speed and the kind of failure mode, brittle or ductile.

Batra et al. (2003) studied this effect numerically and was able to describe this effect by applying the

Bodner–Partom law (1975). Also in impact experiments, where much higher strain rates can occur than in
the present study, good correlations between measurements and calculations were obtained. For example

a constitutive-microdamage model was introduced by Eftis et al. (2003) in order to simulate shock

compressions and fractures caused by hypervelocity impacts. Calculated results were compared to exper-

iments in order to show the capability of the model. In a combined numerical/experimental study of
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Kajberg et al. (2004) about tension tests at high strain rate (over 104 s�1) with steel specimens the defor-

mations are measured by digital photographs. By comparing measurements to finite element calculations

material parameters are identified.

In the present work the simulations are carried out by non-linear transient finite element analysis. The
determination of the material parameters with uni-axial tension tests is described by Stoffel et al. (2001b) in

detail.

The measurements presented in this study are obtained by using two shock tubes subjecting circular

metal plates to impulsive loadings. The pressure acting on the plate is measured by piezoelectric sensors and

the plate deflection is recorded by a capacitor, developed for fast changes of displacements. This way not

only final deformations are measured but also the plate deflection during the impulse duration. This

technique was first used in works of Stoffel et al. (1998) and extended by Weichert and Stoffel (1998) and

Stoffel et al. (2001a,b).
2. Viscoplastic constitutive equations

2.1. Chaboche model

The constitutive equations of the Chaboche model are applied in the following form:
_e p
ij ¼

3

2
_p

s0ij � X 0
ij

J2ðs0rs � X 0
rsÞ

; ð1Þ

_p ¼
J2ðs0ij � X 0

ijÞ � R� k

K

* +n

; ð2Þ

_Xij ¼ 2
3
a_e p

ij � sXij _p; _R ¼ b1ðb2 � RÞ _p ð3Þ
with the abbreviations epij, p, sij, Xij, R, ð Þ0, J2ð Þ denoting Green–Lagrange plastic strain tensor, equivalent

plastic strain, second Piola–Kirchhoff stress tensor, backstress tensor, isotropic hardening, the deviatoric

part of a tensor and equivalent von Mises stress, respectively. The yield limit k and the material parameters

a, s, b1, b2, n, K must be obtained from tension tests. These tests were performed with specimens cut from

the same metal sheets as the plates used in the shock tube experiments (see Section 4). Since only tension

tests could be performed with 2 mm thick specimens, a separation of isotropic and kinematic hardening was

not possible. Therefore in the Chaboche model pure kinematic hardening is assumed. With this kind of

hardening a good convergence in the simulations in former studies was observed.
In order to reduce the elastic–viscoplastic law to the elastic–perfectly plastic material behavior the

hardening parameters are set equal to 0. As far as rigid–perfectly plastic material properties are concerned it

is in the finite element program, used in the present study, not possible to neglect the elastic material

behavior, because the stresses are calculated by the elastic part of the total strains. Therefore the Young’s

modulus is set to a very high value.

2.2. Tanimura model

The Tanimura model is expressed by the following equations:
_e p
ij ¼

3

2
r _p

sij
J2ðsijÞ

; ð4Þ
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_p ¼ e

�S0

1ffiffiffi
3

p J2ðsijÞ � s�

ð5Þ

with the material parameters S0, r, s�, which have to be determined from uni-axial tension tests. The

simplifications used for the Chaboche model are not carried out with the Tanimura model again, because

both models have similar structures. This additional overstress model is applied here because it was

introduced by Tanimura (1979) especially for high dynamical deformation processes and derivated for the

sake of simplicity without hardening.

2.3. Bodner–Partom model

In order to use alternatively a law, which does not separate between elastic and plastic material behavior

the Bodner–Partom model (Bodner and Partom, 1975) is applied in this study expressed by the following

equations:
_e p
ij ¼

3

2
_p

s0ij
J2ðs0rsÞ

; ð6Þ

_p ¼ 2ffiffiffi
3

p D0e
�

1

2

Rþ D
J2ðs0rsÞ

� �2n nþ 1

n ; ð7Þ

D ¼ Xij
sij

J2ðsrsÞ
; ð8Þ

_R ¼ m1ðR1 � RÞ _Wp; ð9Þ

_Wp ¼ sij _e
p
ij; ð10Þ

_Xij ¼ m2

3

2
D1

sij
J2ðsrsÞ

�
� Xij

�
_Wp: ð11Þ
Here Wp denotes the plastic work and the material parameters n, D0, D1, R1, m1, m2 have to be identified

from tension tests. For the identification of the material parameters a method proposed by Chan et al.
(1988) is used.
3. Plate theory and numerical approach

In order to calculate the plate deformations in the geometrically non-linear range, observed in the
experiments, a shell theory is used, assuming small strains and moderate rotations. In former studies (Stoffel

et al., 2001b) it was proved that this theory is suitable for the considered magnitude of strains and dis-

placements. The derivation of this shell model was presented by Schmidt and Reddy (1988) and Schmidt

and Weichert (1989) in detail and is applied in this study for plates. By using a first-order shear deformation

hypothesis expressed by the components of the displacement vector in the plate space in the form
va ¼ v
0

a þ hv
1

a; v3 ¼ v
0

3; a ¼ 1; 2; ð12Þ

also shear deformations are taken into account and thickness changes are neglected. Here va

0
, v3

0
denote the

displacement components, va
1

are the rotations at the midsurface, and h is the normal coordinate. In order to
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trace the evolution of each material parameter in the plate space the structure is divided into layers (Kreja

et al., 1997). For the numerical solution of this model a finite element program is used, developed by

Palmerio et al. (1990) and extended in works of Kreja et al. (1997), Kłosowski et al. (1995), and Stoffel et al.

(2001b).
4. Experimental set-up

For the experiments two shock tubes are used. In tube A (Fig. 1) circular steel and copper plates with

diameters of 138 mm are subjected to impulsive loadings and in tube B (Fig. 2), the greater shock tube,
aluminium plates with 553 mm diameter are used. All plates are 2 mm thick and are clamped between two

ring flanges. Each shock tube consists of a high pressure chamber (HPC) and a low pressure chamber

(LPC), separated from each other by a membrane. By increasing the pressure in the HPC up to a certain

value the membrane breaks and a shock wave is traveling through the LPC, striking the plate at the end and

leading to a high-pressure and high-density impulse. During the impulse duration the history of the

pressure on the plate is measured by piezoelectric sensors suitable to record fast changes of pressure. They

are located in front of the plate in a separate ring flange. In order to measure the middle point displacement

of the plate a capacitor is used, one plate of the capacitor is the circular front plate of the measuring device
and the other one is the plate specimen. The vibration of the plate specimen results in a change of the

voltage applied to the capacitor. A calibration curve relating the measured voltage and the distance between

the capacitor plates to each other has to be determined before the experiment starts. The temperature

dependence of the capacitor requires the calibration before each new experiment.

Depending on the gas used in the HPC and on the length of the HPC different evolutions of the pressure

history can be generated; details about these fluid dynamic effects are described by Stoffel (2000). In order to
Fig. 1. Principle of shock tube A.

Fig. 2. Principle of shock tube B.
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adjust the short impulsive loading the HPC is filled with helium, because the lighter the gas, the faster the

shock wave. This causes a very fast shock wave with a short impulse duration. Furthermore, the shock

period can be decreased by shortening the HPC. The reason for this is as follows: when the membrane

breaks a shock wave moves into the LPC, besides an expansion wave is generated traveling first into the
HPC. It is reflected at its end and reaches finally the plate specimen, thus, destroying the high-pressure state

due to the shock wave. Here the HPC of shock tube A has a length of 5 m, the HPC of tube B 1 m. The

entire lengths of tubes A and B are 12 m and 8 m, respectively. Two shock tubes for the experiments with

different plate materials and with the described possibilities to modify the loading history are used in order

to verify that the measured results are not caused by accident for one special geometry or material but also

hold in a more general case. All pressure evolutions shown in this study in Figs. 3, 11, 17, and 18 are

generated with helium in the HPC of the respective shock tube.
5. Comparison between experiment and simulation

First the characteristic properties concerning the propagation of bending moments in shock wave loaded

plates and their influence on the evolution of plastic zones are studied. Then simplifications using the

Chaboche model are introduced and other viscoplastic laws are applied. As long as overstress models are

used the elastic material behavior is described by Hooke’s law. The determination of the boundary con-

ditions and the damping are described in detail by Stoffel (2000) and Stoffel et al. (2001b). In the legends of
Figs. 3, 11, 17, and 18 it is denoted in brackets with (Sim.) and (Exp.) if the results are obtained by sim-

ulations or experiments, respectively. For the loading histories in the simulations the measured pressures

shown in the diagrams are used.

5.1. Propagation of bending moments and spread of plastic zones

In this chapter it is shown that the spread of plastic zones is dominated in the first millisecond after the

plate is loaded by a shock wave. During this time the bending moments and inner forces propagate the plate

leading to plastifications which have significant influence on the final shape of the deformed plate. In the

following a comparison between measured and simulated plate deformations using the Chaboche model

without simplifications is presented.
In Fig. 3 a measured plate deflection obtained with shock tube B together with a simulated middle point

displacement versus the time is plotted and a good correlation between simulation and experiment can be

observed. In each experiment the surface at the bottom of the plate is loaded by the shock wave. The

evolution of the simulated normal stresses in radial direction in the plate can be traced in Fig. 4 where they

are presented at the bottom of the plate with respect to the time immediately after the shock wave loading.

While the stress at the boundary is increasing monotonically the stress evolution in the midpoint shows an

oscillating behavior. According to Doyle (1997) it is known that impulsively loaded structures are prop-

agated by flexural waves leading to a wide frequency spectrum with different amplitudes. Furthermore the
propagation velocity of flexural waves increases with their frequency. A spectral analysis of the present

oscillation of the bending moment indicates that the highest amplitudes belong to the smallest frequencies.

Due to the entire loading of the plate by a plane shock wave front the flexural wave propagation starts at

the boundary. This results in the oscillating behavior of the normal stress in the midpoint shown in Fig. 4.

The wave parts with the highest frequencies, highest propagation speed and lowest amplitudes reach the

midpoint first, followed by parts with slower propagation speed and higher amplitudes. At the plate

boundary an oscillation does not occur because there the wave propagation has its origin. If this stress

behavior is summarized through the entire cross section area the resulting bending moment in the respective
points can be calculated. This result is presented in Fig. 5. At the plate boundary again a monotonic
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increase can be observed while in the midpoint the oscillation occurs again. The bending moment becomes

0, developing a membrane state, if the middle point displacement in Fig. 3 reaches its first amplitude. The

bending moment in Fig. 5 is shown in radial direction. A positive value causes positive stresses in the top of

the plate. It should be remarked that in the framework of bending theories of plates only positive bending
moments should develop, leading to negative stresses at the bottom. However, positive stresses are also

generated due to the oscillating bending moment. Together with the normal force (see Fig. 6) and the shear

forces which are very small and not shown here, plastic strains in the plate center can develop. Because of

the symmetry the normal force and the bending moment are acting from two directions rectangular to each

other in the plate midsurface. The equivalent plastic strain rate is shown in Fig. 7 for three different points

at the bottom of the plate. By comparing Figs. 5 and 7 the influence of the oscillating bending moment in

the midpoint can be regarded. In Fig. 7 the shock wave loading starts at 0.0079 s and between 0.0083 and

0.0084 s on the time scale a plastification occurs. During this time the bending moment is negative causing
positive stresses at the bottom of the plate. That means positive stresses caused by the bending moment and

by the normal force are superposed. This development of plastic zones by superposition of positive stresses
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at the bottom is only possible if the oscillating character of the bending moment is predicted in the sim-

ulation. Otherwise in bending theories of plates which do not take the propagation of bending moments

immediately after the pressure loading into account only negative stresses due to bending at the bottom of

the plate are possible diminishing the positive stresses of the normal forces.
Immediately after 0.0084 s the plastification at the bottom in the midpoint vanishes due to an unloading

of the bending moment. Because now the positive bending moment causes negative stresses at the bottom

and consequently reduces positive stresses caused by the normal force. After 0.0085 s the bending moment

changes again its direction causing further plastic strains at the bottom in the midpoint.

After the bending moment (Fig. 5) becomes 0 a membrane state is developed and the normal forces in

Fig. 6 becomes dominant causing further plastic strains in Fig. 7. After the first amplitude of the plate

deflection (Fig. 3) is reached and the movement of the middle point displacement changes its direction the

plate is unloaded and after repeated oscillations only small further plastifications occur. The time scale in
Figs. 4–7 represents the period of the first amplitude of the deflection in Fig. 3.

In Fig. 8, where the half of the plate is shown at several times after the plate was loaded by the shock

wave, the influence of the oscillating bending moment on the shape of the deformed plate is studied. While

the bending moment at the plate boundary increases monotonically after the shock wave has loaded the

plate, the plate center in Fig. 8 is slightly vibrating due to the oscillating bending moment. The curvature in

the midpoint is changing analogously to the direction of the bending moment. This results in a trapezoidal

shape of the deformed plate in Fig. 8. After the membrane state has occurred a conical shape of the

deformed plate is caused (Fig. 9). For comparison in Fig. 10 the difference between final shapes of
impulsively and quasi-statically deformed plates are shown. Here a plate was subjected to an impulsive

loading with 3.5 bar and another plate was loaded quasi-statically with the same peak pressure. In order to

compare the shapes of plates deformed with different loading velocities a third plate was loaded quasi-

statically as long as the center deflection was equal to the middle point displacement of the dynamically

deformed plate. The result is a spherical form of a quasi-statically deformed plate in contrast to the conical

shape of the shock wave loaded plate.

Because of the good agreement between measured and calculated plate deflections the elastic–

viscoplastic material law used in this chapter is assumed to be suitable to predict the realistic dynamic plate
response. Consequently the calculated propagation of bending moments, being responsible for plastic

yielding in the shown simulation results, have to be predicted also by calculations using other material laws.

Otherwise the calculated results could not lead to proper correlations to the experiments.
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The study in this chapter showed the significant influence of the propagation of bending moments on the
spread of plastic zones in the plate and on the shape forming of the plate. In the first millisecond after the

plate was loaded by the shock wave the oscillation of the radial bending moment controlled the plastifi-

cation. Therefore it is necessary to use in the following material models which are able to predict the

essential propagation of bending moments.
5.2. Simulations using the Chaboche model with simplifications

After the propagation of the generalized forces in the plate and the development of plastic zones was

calculated in Section 5.1 for the general elastic–viscoplastic law, it is now discussed how the non-linear

elastic–viscoplastic model can be reduced to a more simple description without leading to unrealistic

simulation results. Furthermore it is investigated how important the consideration of elastic material

behavior is for the evolution of plastic zones in the plate. By comparing the calculated results to experi-

ments and to simulations using the elastic–viscoplastic model of Section 5.1 the most accurate simulation is

determined.

In Fig. 11 measured and simulated plate deflections versus the time are shown. The experiments are
carried out with circular steel plates in tube A (Fig. 1) and in all simulations strain rate sensitivity is
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Fig. 11. Viscoplastic vibrations (shock tube A).
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considered. The three simulations are carried out using elastic–viscoplastic, elastic–perfectly plastic and

rigid–perfectly plastic material properties, respectively. As long as the elasticity of the material is taken into
account a good agreement between simulated and measured deformations is observed but if the elastic part

is neglected the simulation leads to inaccurate results. In order to study the evolution of bending moments

and plastic zones in the plate more detailed, in Fig. 12 the radial bending moments in the plate center are

shown versus the time for all three kinds of material laws. In the case of elastic–plastic material behavior an

oscillation of the bending moment can be observed, which does not occur if rigid–perfectly plastic material

properties are assumed. In order to ensure if the wave propagation vanishes due to the missing elastic part,

in Fig. 13 the evolution of the bending moment of Fig. 12 in the case of elastic–plastic behavior with

hardening is shown using different Young’s moduli. Starting with the original elastic property
(E ¼ 198:6 	 109 N/mm2) an oscillating behavior is visible but with an increasing Young’s modulus towards

infinite this effect vanishes. After a time period T the first lower amplitude of the oscillating bending

moment is reached. Using higher Young’s moduli a shifting of the amplitude with time t1 is observed which

can be taken as a measurement for the vanishing oscillation. That means for the calculation of propagating
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bending moments it is important to include the elastic material behavior. The hardening property appears
not to play an important role because even the simulation in Fig. 11, which does not take the hardening into

account, leads only to a small variation in comparison to the calculation with non-linear hardening.

In order to study the influence of assumptions in the material law of another generalized force in Fig. 14

the circumferential bending moment at the boundary is presented for all three kinds of constitutive

equations. Here also a big deviation in the development of the moment is visible, if the elastic material

behavior is neglected. The entire distribution of the circumferential moment over the plate radius at several

times is presented in Fig. 15. Here also rigid–perfectly plastic as well as elastic–perfectly plastic material

properties are assumed. It can be observed that in the case of rigid–perfectly plastic material behavior the
circumferential moment is nearly constant over the plate surface and changes in time. In the contrary an

oscillating character occurs as long as elastic material properties are taken into account.

The different evolutions of the bending moments have significant influence on the development of plastic

zones in the plate (see Fig. 16). Here the equivalent plastic strain rate is shown in the top of the plate center.

The magnitude of plastification is much smaller if a rigid–perfectly plastic material law is used than in the
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case of elastic–plastic material behavior. This observation is in agreement with the small deflection in the

case of rigid–perfect plasticity in Fig. 11. In Fig. 17 inelastic measured and simulated vibrations of alu-

minium plates with a diameter of 553 mm are shown. In this case the simulation using the rigid–perfectly

plastic model including strain rate sensitivity leads to a better correlation with the experiment than the one

in Fig. 11. This is due to the fact that the plastic strains compared with the total strains for the plate

deformations in Fig. 16 are greater than in the case of the deformations in Fig. 11.

It can be summarized that also a good correlation to the experiment can be observed if hardening effects
are neglected. But it is necessary to include the elastic material properties in order to predict the evolutions

of oscillating bending moments which are responsible for the plastification.
5.3. Simulations using the Chaboche, Tanimura and Bodner–Partom models

In Figs. 17 and 18 simulated and measured middle point displacements are shown using shock tubes B

and A, respectively. In both diagrams the simulations using the overstress models show the best correla-
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tions to the experiments. In Fig. 17 the first three simulations indicated in the legends are carried out by

using the Chaboche model. The Chaboche and the Tanimura model are both overstress models and

therefore they lead under the assumption of perfect plasticity to nearly identical results. However, different

material parameter procedures were applied to these models. The Bodner–Partom model does not distin-

guish between elastic and plastic material properties, therefore, the material parameter identification

procedure of the Bodner–Partom law differs from that of overstress models. This could be a reason for the

differences between the presented simulations.
6. Conclusions

The presented experimental set-up turned out to be appropriate for measuring plate deflections and
loading histories during the impulse duration. It was possible to record the dynamic response of metal
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plates in order to obtain realistic load displacement dependencies which were compared to simulated

results. In the simulations special attention was focused on the propagation of bending moments and it was

shown that they have been most responsible for the spread of plastic zones in the plate. Immediately after

the shock wave has loaded the plate the plastification depended on the oscillation of the bending moment in
superposition with the normal force. For that reason simplifications were only as long possible as the

propagating bending moments could still be predicted realistically. Therefore it was necessary to include the

elastic material properties in the simulations.

Using the Chaboche model elastic, hardening and viscous material properties can be separated from

each other. This allows in the material parameter identification procedure a precise adaption of the

viscoplastic law to the uni-axial tension tests. In the Bodner–Partom model elastic properties are not

assumed and hardening as well as viscous behaviors are combined with each other. In the Tanimura model

the hardening is neglected. With this described advantage in the case of the elastic–viscoplastic Chaboche
model simulations using this law lead to the most precise results.
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